Grammatical Error Detection Using Error- and Grammaticality-Specific Word Embeddings

نویسندگان

  • Masahiro Kaneko
  • Yuya Sakaizawa
  • Mamoru Komachi
چکیده

In this study, we improve grammatical error detection by learning word embeddings that consider grammaticality and error patterns. Most existing algorithms for learning word embeddings usually model only the syntactic context of words so that classifiers treat erroneous and correct words as similar inputs. We address the problem of contextual information by considering learner errors. Specifically, we propose two models: one model that employs grammatical error patterns and another model that considers grammaticality of the target word. We determine grammaticality of n-gram sequence from the annotated error tags and extract grammatical error patterns for word embeddings from large-scale learner corpora. Experimental results show that a bidirectional long-short term memory model initialized by our word embeddings achieved the state-of-the-art accuracy by a large margin in an English grammatical error detection task on the First Certificate in English dataset.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Grammatical Error Detection for Corrective Feedback Provision in Oral Conversations

The demand for computer-assisted language learning systems that can provide corrective feedback on language learners’ speaking has increased. However, it is not a trivial task to detect grammatical errors in oral conversations because of the unavoidable errors of automatic speech recognition systems. To provide corrective feedback, a novel method to detect grammatical errors in speaking perform...

متن کامل

Bi-LSTM Neural Networks for Chinese Grammatical Error Diagnosis

Grammatical Error Diagnosis for Chinese has always been a challenge for both foreign learners and NLP researchers, for the variousity of grammar and the flexibility of expression. In this paper, we present a model based on Bidirectional Long Short-Term Memory(Bi-LSTM) neural networks, which treats the task as a sequence labeling problem, so as to detect Chinese grammatical errors, to identify t...

متن کامل

Acoustic Word Embeddings for ASR Error Detection

This paper focuses on error detection in Automatic Speech Recognition (ASR) outputs. A neural network architecture is proposed, which is well suited to handle continuous word representations, like word embeddings. In a previous study, the authors explored the use of linguistic word embeddings, and more particularly their combination. In this new study, the use of acoustic word embeddings is exp...

متن کامل

There's No Comparison: Reference-less Evaluation Metrics in Grammatical Error Correction

Current methods for automatically evaluating grammatical error correction (GEC) systems rely on gold-standard references. However, these methods suffer from penalizing grammatical edits that are correct but not in the gold standard. We show that reference-less grammaticality metrics correlate very strongly with human judgments and are competitive with the leading reference-based evaluation metr...

متن کامل

Grammatical Error Correction Considering Multi-word Expressions

Multi-word expressions (MWEs) have been recognized as important linguistic information and much research has been conducted especially on their extraction and interpretation. On the other hand, they have hardly been used in real application areas. While those who are learning English as a second language (ESL) use MWEs in their writings just like native speakers, MWEs haven’t been taken into co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017